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surface-stabilized smectic C chevron cells
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We use a Landau-de Gennes model to study the structure of the wall formed between two
oppositely switched areas (pixels) in surface stabilized smectic C cells with uniform chevron
direction. We find the width of the wall and calculate the energy associated with its formation.
This approach also allows us to determine the effect of the temperature on the pixel wall
properties. We predict analytically and calculate numerically that both the wall energy and
the wall width obey a power law dependence on temperature with the exponents 3/2 and

— 1/2, respectively.

1. Introduction

The chevron structure of the smectic layer is a rule in
most surface-stabilized cells filled with either achiral or
ferroelectric smectic C liquid crystals [ 1, 2]. In such cells
the chevron structure is formed because of the mismatch
between the natural layer thickness of the SmC phase
(d.) and the periodicity determined by the surface (d, ),
figure 1 (a). The chevron structure is thus a result of the
competition between the sample history (the former
structure is usually the smectic A and in this phase the
smectic layer position is frozen-in at the surface) and the
thermodynamics of the smectic C phase which requires
a different periodicity. The energetically most favourable
way to fulfil both requirements is to form a chevron
structure.

Surface-stabilized ferroelectric liquid crystal cells are
known to exhibit at least two stable director states,
between which the cell can be switched by an external
electric field, figure 1(b, ¢) [3]. Because of its possible
applications the structure has attracted much attention
from both experimentalists and theoreticians. Recently
we have proposed the Landau—de Gennes model [4, 5]
as a compact and simple model to study all the essential
characteristics of the chevron structure. The director and
layer structure was studied as a function of the relevant
characteristic lengths entering the model, the surface
anchoring conditions and temperature.

*Author for correspondence; e-mail: natasa.vaupotic
@uni-mb.si

The usual experimental case is that the layer tilt angle
(6) is smaller than the molecular cone angle (9). This
leads to director bistabilty at the surface [ 6-10] which
consequently leads to chevron bistability. In [4] we
have also shown that §< 4 is not a necessary condition
for chevron bistability. Due to competition between the
surface and bulk forces the nematic director does not
remain in the plane of the smectic layer normal (the
chevron structure is not planar) at the chevron tip and
so there exist two stable director structures even when
5= 9 and the orientational anchoring at the surface is
monostable.

An important reason for modelling surface-stabilized
smectic C cells is to describe the switching dynamics
between the stable director structures by an external
electric field. In this paper we consider switching in cells
with a uniform chevron direction everywhere in the cell.
The work presented can be regarded as a basis for future
work on the dynamics of switching and the nucleation
of switching in surface-stabilized cells with uniform
chevron direction.

In the present paper we study the properties of the
wall separating two possible states of the director at the
chevron interface that are N smectic layers apart. As in
our previous papers, we assume that §= 9 so that there
is no surface bistability. In ferroelectric smectic C cells
such opposite states can be established, for example, by
an external electric field. In the modelling of two pixels
with different director orientation, and the wall between

Journal of Liquid Crystals ISSN 0267-8292 print/ISSN 1366-5855 online © 1999 Taylor & Francis Ltd
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Figure 1. The chevron structure. (a) The structure is described
by the molecular cone angle 9, the layer tilt angle § and
the director position on the cone ¢. v is the smectic layer
normal, L is the cell thickness, d, is the periodicity required
by the surface and d. is the periodicity required by the
smectic C structure. () One stable director state with p=0
at the chevron tip. (c) Another stable state with p= Tt at
the chevron tip. (d) The structure at the centre of the wall
is a planar chevron structure.

them, we use the geometry shown in figure 1. If the
z-axis is chosen to point along the surfaces and along
the chevron direction then at z< — Nd, /2 the director
is switched in one stable state, figure 1(b). At z> Nd, /2
the director is switched to the other stable state,
figure 1(c). We find the width of the area (wall) over
which the director rotates from one stable state to the
other and calculate the energy associated with the wall
as a function of the number of smectic layers between
the switched layers and can then make estimates of the
size of the pixel required for switching to occur. Our
approach, ie. the use of the Landau type model, also
allows us to determine the effect of temperature on the
pixel wall properties. We show that both the wall energy
and the wall width obey a power law dependence on
temperature.

The plan of this paper is as follows. In §2 the geometry
and the theoretical model are introduced. In §3 we discuss
the numerical results, and summarize our conclusions
in §4.

2. The model
We use the Landau—de Gennes model, based on the
analogy between superconductors and smectics [ 11-13].
In the context of this model the smectic C structure is
described by the nematic director n and the complex
smectic order parameter y:

w(r) = n() exp[ip@)]

where n(r) = |w(r)| is the magnitude of the smectic order
parameter and ¢(r) is the phase factor that determines
the position of the smectic layers. The free energy density
consists of nematic and smectic contribution [4, 5, 13]:

1 .
f=5KLE mP+@x0p]+el@ V- ig)yf

+eomxvVylr+ Dnx v )y,

The parameter K is the nematic elastic constant. We
use a one-constant approximation. The parameter ¢ is
related to the de Gennes smectic compressibility con-
stant [4]. The coefficient ¢, is temperature dependent:
¢, =c,,(T/T,.— 1), and determines the phase transition
from the smectic A to the smectic C phase at the bulk
phase transition temperature 7, .. The coefficient D is
positive and the term associated with it has two functions.
First, it stabilizes finite director tilt with respect to the
smectic layer normal; second, it provides an energy cost
to smectic layer curvature. The periodicity required by
the surface is ¢, = 27/d,, where d, is the smectic layer
thickness in the smectic A phase.

The bulk value of the molecular cone angle that
follows from the model is

tan 9, = [|c, 1/(2Dg;)]'". (1)

2.1. Calculation details
The co-ordinate system used for calculations is shown
in figure 1. We assume that the director and the smectic
order parameter are functions of x and z only, and for
numerical calculations we express the director by its
components along the x-, y- and z-axes:

n(x, z) = [k(x, 2), I(x, ), m(x, 2)],
where m= (1— k* — )", because |n(r)| = 1. The smectic
order parameter phase factor is:
¢(X, Z) =4 [Z+ M(X, Z)]

We have introduced the layer displacement field u(x, z)
which describes the departure from the planar layer con-
figuration. The variables used in the numerical calculations
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are k(x, z), I(x, z) and u(x, z). The results, however, are
presented in terms of the molecular cone angle 9, the
director position on the cone ¢ and the smectic layer
tilt 6.

In the modelling of two pixels with different director
orientation and the wall between them, we use the
geometry shown in figure 1. At z< — Nd, /2 the director
is switched in one stable state with ¢ = 0 at the chevron
tip. We shall refer to this state as a ¢ -state, because in
figure 1(b) the director at the chevron tip points out of
the paper in the — y-direction. At z> Nd, /2 the director
is switched to the other stable state with ¢= 7t at the
chevron tip (x -state, since the director at the chevron
tip points inside the paper, ie. in the y-direction).
These are assumed to be strong boundary conditions at
z= — Nd,[2 and z = Nd, /2. The wall is centred around
z=0.

2.1.1. Assumptions
In calculating the structure and the energy of the wall
several reasonable assumptions are employed:

(1) We assume non-polar surface orientational anchor-
ing and study only cells with symmetric chevron
structure. In the symmetric chevron structure we
expect a symmetric structure of the wall formed
between two stable states. As a result the structure
in the smectic layer that lies in the centre of the wall
(at z=0) has to be a planar chevron structure in
which the director lies in the xz-plane everywhere
in the layer, see figure 1(d).

(2) We assume that the cell thickness is much larger
than the width of the chevron tip. As a result the
effect of the surface on the structure around the
chevron tip is disregarded.

(3) The results obtained from our previous work are
used to simplify the model. The most important
simplification follows from the result that the
gradient terms in the director components that
follow from the smectic term D|(n x v )’ y* only
slightly renormalize the nematic elastic constant
K and as such they can be neglected. The only
relevant gradient term in D|(n x v ¥ y* is the term
including the second spatial derivative of the
displacement u.

(4) We assume that the displacement field u(r) is a
function of x only. This means that the smectic
layer orientation along the z-axis does not change
significantly, i.e. the director switches from one
state to the other mostly by changing the angles
9 and ¢. This assumption was checked for validity.

(5) We also assume that the magnitude of the smectic
order parameter is constant and equal to its bulk
value: n(r)=n,.

2.1.2. Dimensionless free energy density

For computational purposes it is useful to write the
energy in dimensionless form. We scale the length in
the x-direction with respect to the characteristic width
of the chevron tip A, = (2D/c.|)'"* [4,5] and thus
introduce the following dimensionless length:

E=x/ A

The co-ordinate z is scaled with respect to the layer
thickness (d, ) required by the surface:

§=z/d,.

In addition we introduce the following dimensionless
parameters and constants:

“Topgnmt N el T MY 2mtan 9,
and
1 ou(é)
w(é)=— .
A’ch aé

The dimensionless free energy G is defined as

1
G=———+ ,z)dxdz
2T L 115 9o Aen ij(x )

=J [, O+ g.(& 9ldedS

where (the subscripts ¢ and & denote a partial derivative
with respect to ¢ and &, respectively)

! 5
gn(é,Q=5CK[(R2Fg+ zgé)(H m_)

2

k
+w@+@0+ﬁ)
=

+
m

2kl 21
T (R K+ k) + — Rk~ 141(5)] (2)

is the dimensionless nematic free energy density; the
dimensionless smectic free energy density is

1
B2+ 2
2tan’ 9, 2"¢

(3)

2. (& O=Cywk+m— 1Y - B+

where
B=F+KE+w (- k)= 2mkw.

The spatial dependences of (&, &), [(&, &) and u(&) are
found in the following way. First we find the solution
for one single layer [4]. In that case all the variables
are functions of & only. We find spatial dependencies for
k(&), 1(¢) and u(&). When one solution is found we know
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that k(&), — /(¢) and u(£) is also the structure with a
minimum energy—that is the second bistable director
structure. The first solution is then taken as a boundary
condition in the smectic layer at z= — Nd, /2 and the
other as a boundary condition at z = Nd, /2. Finally we
study a two dimensional problem: we minimize the
energy over k(& ¢) and (&, ¢) and employ a relaxation
method to solve the coupled set of Euler-Lagrange
equations obtained.

3. Numerical results
We first show results for the structure and energy of
the wall formed between two switched regions at a
constant temperature deep in the smectic C phase, i.e.
far from the smectic C—smectic A or smectic C—nematic
phase transition temperature. To present characteristic
results we chose the following set of values [ 14, 15]:

9,=20° dy=3nm, c¢fles|=10, K=10"""Jm ",

D@ /K =102, N = 120. (4)

With these values the dimensionless parameters are:
Cy =50, C; =10 and R =045. In the x-direction we
extended the calculation to x= + 30 A,,. The typical
width of the cell is 2 pm, which is about 1500 4., with
the chosen set of parameters. Inside one layer significant
variation of the variables k(&, ¢), I(&, ¢) and u(&) occurs in
a region of a width of a few typical chevron widths. Thus
at x = + 30 A, we are already very far from the chevron
tip and can take the following free boundary conditions
at these values of x: 8l(&, &)/6E =0, ok(&, &6 =0 and
ou(&)/og=0.

In figures 2(@) and 2(b), respectively, we show the
molecular cone angle variation along the ¢-axis at
different values of &, and its variation along the &-axis
at chosen values of & We are considering only the
symmetrical chevron structure where 9 is a symmetric
function along & around & = 0. Since the director at the
chevron tip has to rotate from ¢=0 at {= — N/2 to
o= T at {= N/2 the only director position at &= 0 and
¢=0 allowed by the symmetry is n(é=0, £=0)=(0,0, 1).
This can also be seen from figure 2, where the molecular
cone angle essentially reduces to 0 at =0 and the
chevron tip.

The crucial parameter which determines optical
properties of the surface-stabilized smectic C liquid
crystal cells is the director position on the cone. When
such a cell is set between two properly aligned crossed
polarizers one of the director states transmits light
(bright state) and the other does not (dark state). In
figures 3 (e) and 3 (), respectively, we show the director
rotation on the cone (¢) along the ¢-axis at different
values of &, and its rotation along the &-axis at chosen

1.0 £=30
800/8, &3
0.8- §=2
0.6 \&1
0.4-
1 (a) =0
0.2-
0.0 T T T T T T T T T T T

-60 -50 -40 -30 =20 -10 4 0

1.0 ]
s, |
0.8-
0.6
£=-60
0.2- =2
0.0 : =0

-15 -10 -5 g 0

Figure 2. (@) The molecular cone angle variation along the
¢-axis at different values of & (b) The molecular cone
angle variation along the &-axis at chosen values of & The
number of smectic layers between the switched areas is
N = 120.

values of ¢ It can be seen that the director rotation on
the cone from one state to the other is localized around
¢=0. However [see figure 3(a)], the rotation on the
cone along the ¢-axis (ie. from one smectic layer to
another) is significant at all values of & (while the
molecular cone angle changes significantly along ¢ only
close to the chevron tip, i.e. at & close to 0). The main
deformation in the smectic C structure is thus localized
along the ¢-axis around &= 0 (the chevron tip) and along
the &-axis around ¢= 0 (the centre of the wall associated
with the pixel switch).

We see that at ¢= 0 the value of ¢ is @(&, = 0)= 12
for each & The exception is the value of ¢ at £=0,
where 9= 0 and ¢ is not defined. So in the smectic layer
that lies between the two switched areas there is a planar
chevron structure, where the director lies in the xz-plane
everywhere in the layer.

In figure4 we show the difference Ag=g({)- g
between the free energy density g(¢) defined as

L/(Z/lch)
g(Q=J [2.(& O+ g.(& 9ldéE

_ L/(2&ch)
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3.0
o) £=-0.3
2.57 (a) -1
] i3
2.0 £=-30
1.5+
1.0
0.5+
0.0 T T T T T T T T
60 -40 -20 0 20 40 ¢ 60
=2
o(&) C§=5
o) &b
kg
2 g /2
0 E
=60
=5
C£-2
-2 T T T T T T T T T T T T
-30 -20 -10 0 10 20 13 30

Figure 3. () The director rotation on the cone (p) along the
¢-axis at different values of &. (b) The director rotation on
the cone along the &-axis at chosen values of ¢ The
structure is calculated for — N/2< ¢< N/2, where N = 120.

0.4
1.15
Ag
0.2 1
0 5 ¢ 10
0.0 T T T T T T T T
-60 -40 -20 0 20 40 o 60

Figure 4. The difference Ag= g(¢)- g as a function of ¢=z/d, .
The number of smectic layers between the switched areas
is N = 120. The inset: The difference Ag at N = 20.

and the free energy density g the cell would have if there
were no switching along the z-direction:

L/(Z/lch)
g= J [2.(6)+ g.(&)]de.
_ L/(2&ch)

The energy increases significantly around ¢= 0, where
the deformation in 9 and ¢ is concentrated. The increase

in dimensionless free energy associated with the wall is
obtained as

N2
AG:J [g(©)- gldC
_ NP2
From the considerations in §2.1.2 we calculate the
increase in the free energy:

K
AG.

AF =
Cy R

At the chosen set of parameters and L = 2 pm the energy
associated with the wall is 7x 10-'> Jm~'. Assuming
that the switch from one stable state to the other is
obtained by the application of an external electric field,
we can also estimate the reduction in free energy when
the director switches from one stable state to the other.
When a voltage U is applied across the cell the reduction
in the electrical free energy is approximately 2P Ud, in
one smectic layer. At P=50puCm-* and U =1V this
amounts to ~3x 10-"* Jm~' per layer. The energy
associated with the wall is thus of the order of the
energy reduction inside a few tens of switched layers.

Now we have the information needed to answer
several questions regarding the pixel switching:

(1) The number of smectic layers which need to be
switched so that the decrease in the free energy
due to switching is greater than the increase in
free energy due to wall formation gives an estimate
of a minimum pixel width needed for the switch
actually to occur.

(2) If, on the other hand, we have a prescribed width
over which the voltage is applied then with the
above procedure the voltage needed to switch the
director can be found.

(3) The width of the wall (A, ) between switched areas
is approximately 50 smectic layers at a chosen
realistic set of parameters (4). With d, = 3nm
there is thus a region of about 0.1 pm between the
two switched areas where the director is in none
of the bistable states. This width is negligible
compared with the common pixel widths which
are of the order of tens of pm.

It becomes rather energy costly if we want to switch
layers that are less than N, = A, /d, layers apart. The
increase in free energy as a function of the number of
smectic layers between the switched areas is shown in
figure 5. At N< N, the wall energy increases signifi-
cantly. The layers that are closer than N, layers apart
can still be switched, but a higher price is paid to achieve
switching. The energy associated with the wall is already
2x 10-'"" Jm-"' at N =20, which is a few times larger
than at N =120 (see also the inset to figure4). At
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2.0

AF/K

1.0 =

0.5 1

20 50 100 N 200

Figure 5. The increase in the free energy (AF) due to the wall
formation as a function of a number (V) of smectic layers

between the switched areas. K is the nematic elastic
constant.

N> N, the wall energy remains constant regardless of
the number of intermediate layers. By increasing the
number of intermediate layers above N, we simply
increase the width of the pixel. An important conclusion
follows from this result (see figure 6): the width of the
region Az, along which an external field has to be
applied across the cell, has to be large enough that the
free energy decrease due to the electrical term covers
the energy increase due to the wall formation. This
gives the minimum width of the region over which the
electrical field must be applied. The pixel width (Az;)
can be much greater, however; its width is determined
by the distance between the two regions in which the
electric field is applied minus the wall width.

Finally we study the temperature dependence of the
energy associated with the wall formation (AF) and
the width of the wall (A, ). The temperature dependent
parameter is |c, |. The temperature dependence is best
presented by the variation of the reduced temperature
t=T/T,.— 1, whichis 0 at the bulk smectic A—smectic C
phase transition temperature, and is negative in the

Az, Az, Az

L

it
PR deged

o secr s

Figure 6. The width of the switched region. The width over
which the electric field is applied is Az;;. The width of the
wall formed between two switched areas is Az, . In this
region the director switches from the ¢ to the x state.
The actual width of the switched area is Az, and can be
wider than Az, .

smectic C phase. The dimensionless parameter C; is related
to the reduced temperature as Cy = ¢/lc.| = (a,l7])~",
where q, is of the order of 1 [15].

To study temperature dependence we have chosen the
following set of parameters: The values at |f|= 0.1 are
given in (4). The following temperature dependences can
easily be found:

tan 9, |7|'?, Cpx |t]7', R |f]7 ',

Since the chevron width diverges when the temperature
approaches the smectic C-smectic A phase transition
temperature, we have to send the cell boundaries to
infinity in order to study only the effects inherent to the
chevron structure and disregard the surface effects. In
calculation we have thus chosen L= 100 um. Results
are also shown for L=2pm, where the effect of the
confined system can already be seen. Since no surface
orientational effect was considered at L=2pm, these
results would be valid only in the case of a non-physical
surface condition with no preferred anchoring orientation
at the surface.

The width of the wall as a function of the reduced
temperature is shown in figure 7. The width increases
as the absolute value of the reduced temperature
decreases. At L= 100pm the dependence obeys a
power law: A, o |7~ °*. At L =2 um we observe a slight
deviation from this power law. We can also estimate
this power law from the dimensionless free energy
densities, see equations (2) and (3). The leading term
that opposes the director rotation on the cone from
one stable state, with the y-component of the director
equal to /(& &= — N/2), to the other stable state, with
1 ¢=NJ2)= - I(& &= — N/J2), is in the nematic free
energy density, equation(2), and is CyR*[/2. The
dimensionless constant in front of the Z-term in the
smectic elastic free energy density, equation (3), is of

T T T T T T Ty T T T

10 10” 10° |y w0

Figure 7. The width of the wall (1,) as a function of the
reduced temperature |7|. Squares: L= 100pm; circles:
L =2 pm; full line: the best power law fit to the numerical
results obtained with L = 100 pm.



19: 01 25 January 2011

Downl oaded At:

Domain walls in chevron SSFLC cells 1435

the order of 1. We can thus expect that the variation
of /(¢) will be significant over the region with the width
of the order of ~d,(Cy R*)'*. Since R A, < |¢|~'* the
wall width can be expected to follow the same power
law dependence as the chevron width: A, < |¢|~ 7.
Numerical calculations confirm this rather rough estimate.

In figure 8 we show the temperature dependence of
the wall energy. The energy associated with the wall
formation increases as the absolute value of the reduced
temperature increases (i.e. as we go deeper into the
smectic-C phase). We note that the energy depends
on the cell thickness since the deformation of 9 and ¢
at the wall (¢~ 0) extends across the whole cell, i.e.
from x=—-L1/2 to x=1/2. At L=100pum the wall
energy obeys a power law dependence on temperature:
AF o |f]'°. At L = 2 um we see deviation from this power
law at || < 0.01 where first the width of the wall due to
the switch between two states, and then the chevron
width, become comparable to the cell thickness.

The energy power law dependence can again be
estimated from the model. Let us assume an extremely
simplified situation with a bookshelf geometry of the
smectic layers. Let the director inside one layer lie in
the yz-plane everywhere in the layer. Also the molecular
cone angle is the same everywhere in the layer. The
situation is similar to that shown in figure 1. The director
switches between two stable states. The director in the
layer that lies in the centre of the wall lies in the xz-plane
(no director pretilt in the yz-plane which is favoured by
the smectic C phase). The free energy density that a book-
shelf structure has in either stable state is approximately
— ey lg2m: & (for a more detailed expression see refs. [4]
and [5]). At the centre of the wall between the stable
states 9= 0 and the free energy density of such a structure

10
AF/K

]0-5"':'I T T T T T T
10° 10° 107 g 107

Figure 8. The energy associated with the wall formation
(AF) as a function of the reduced temperature |¢|. K is
the nematic elastic constant. Squares: L = 100 pm; circles:
L= 2pm; full and dashed lines: the best power law fit to
the numerical results obtained with L = 100 pm.

would be approximately 0. Because ¢, and n, are temper-
ature independent, the free energy associated with the wall
formation is proportional to |, [F A, < |f]|f]|¢]~ ' = |77
A more detailed numerical calculation confirmed this
power law dependence.

4. Conclusions

We have studied theoretically the pixel wall properties
in surface-stabilized smectic C cells. Using the Landau—
de Gennes model we determined the structure and
energy of the wall formed between two states in cells
with a uniform chevron direction. The director rotation
from one state to the other occurs in the middle between
the regions in which two opposite states are stabilized
by, for example, the application of an external electric
field. The width of the wall is temperature dependent
and it obeys the power law A, « |¢]-°, as long as the
cell thickness is much larger than the wall width and
the chevron tip width. Far from the smectic C-smectic A
phase transition temperature the wall width is a few tens
of smectic layer widths, and the energy associated with
the wall formation is comparable to the energy reduction
due to the application of the electric field over a few
smectic layers. The wall energy also obeys a power law
dependence on temperature: AF« |¢|'°, as long as the
cell thickness is much larger than the wall width and
the chevron tip width.
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