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We use a Landau± de Gennes model to study the structure of the wall formed between two
oppositely switched areas (pixels) in surface stabilized smectic C cells with uniform chevron
direction. We ® nd the width of the wall and calculate the energy associated with its formation.
This approach also allows us to determine the e� ect of the temperature on the pixel wall
properties. We predict analytically and calculate numerically that both the wall energy and
the wall width obey a power law dependence on temperature with the exponents 3/2 and
Õ 1/2, respectively.

1. Introduction The usual experimental case is that the layer tilt angle
The chevron structure of the smectic layer is a rule in (d) is smaller than the molecular cone angle (q). This

most surface-stabilized cells ® lled with either achiral or leads to director bistabilty at the surface [6± 10] which
ferroelectric smectic C liquid crystals [1, 2]. In such cells consequently leads to chevron bistability. In [4] we
the chevron structure is formed because of the mismatch have also shown that d< q is not a necessary condition
between the natural layer thickness of the SmC phase for chevron bistability. Due to competition between the
(dC ) and the periodicity determined by the surface (d0 ), surface and bulk forces the nematic director does not
® gure 1(a). The chevron structure is thus a result of the remain in the plane of the smectic layer normal (the
competition between the sample history (the former chevron structure is not planar) at the chevron tip and
structure is usually the smectic A and in this phase the so there exist two stable director structures even when
smectic layer position is frozen-in at the surface) and the d = q and the orientational anchoring at the surface is
thermodynamics of the smectic C phase which requires monostable.
a di� erent periodicity. The energetically most favourable An important reason for modelling surface-stabilized
way to ful® l both requirements is to form a chevron smectic C cells is to describe the switching dynamics
structure. between the stable director structures by an external

Surface-stabilized ferroelectric liquid crystal cells are electric ® eld. In this paper we consider switching in cellsknown to exhibit at least two stable director states, with a uniform chevron direction everywhere in the cell.between which the cell can be switched by an external
The work presented can be regarded as a basis for futureelectric ® eld, ® gure 1 (b, c) [3]. Because of its possible
work on the dynamics of switching and the nucleationapplications the structure has attracted much attention
of switching in surface-stabilized cells with uniformfrom both experimentalists and theoreticians. Recently
chevron direction.we have proposed the Landau± de Gennes model [4, 5]

In the present paper we study the properties of theas a compact and simple model to study all the essential
wall separating two possible states of the director at thecharacteristics of the chevron structure. The director and
chevron interface that are N smectic layers apart. As inlayer structure was studied as a function of the relevant
our previous papers, we assume that d = q so that therecharacteristic lengths entering the model, the surface
is no surface bistability. In ferroelectric smectic C cellsanchoring conditions and temperature.
such opposite states can be established, for example, by
an external electric ® eld. In the modelling of two pixels*Author for correspondence; e-mail: natasa.vaupotic

@uni-mb.si with di� erent director orientation, and the wall between
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1430 N. VaupoticÏ and M. CÏ opicÏ

The plan of this paper is as follows. In §2 the geometry
and the theoretical model are introduced. In §3 we discuss
the numerical results, and summarize our conclusions
in §4.

2. The model

We use the Landau± de Gennes model, based on the
analogy between superconductors and smectics [11± 13].
In the context of this model the smectic C structure is
described by the nematic director n and the complex
smectic order parameter y:

y(r)=g(r) exp[iw(r)]

where g(r) = |y(r) | is the magnitude of the smectic order
parameter and w(r) is the phase factor that determines
the position of the smectic layers. The free energy density
consists of nematic and smectic contribution [4, 5, 13]:

f =
1

2
K [(= ¯ n)2 + (= Ö n)2 ]+ c

d
| (n ¯ = Õ iq0 )y|2

+ c) |n Ö = y|2 + D| (n Ö = )2 y|2 .

The parameter K is the nematic elastic constant. We
use a one-constant approximation. The parameter c

d
is

related to the de Gennes smectic compressibility con-
stant [4]. The coe� cient c) is temperature dependent:
c) = c) 0 (T /TA C Õ 1), and determines the phase transition
from the smectic A to the smectic C phase at the bulk
phase transition temperature TA C . The coe� cient D is

Figure 1. The chevron structure. (a) The structure is described positive and the term associated with it has two functions.
by the molecular cone angle q, the layer tilt angle d and First, it stabilizes ® nite director tilt with respect to the
the director position on the cone Q. m is the smectic layer smectic layer normal; second, it provides an energy costnormal, L is the cell thickness, d0 is the periodicity required

to smectic layer curvature. The periodicity required byby the surface and dC is the periodicity required by the
the surface is q0 = 2p/d0 , where d0 is the smectic layersmectic C structure. (b) One stable director state with Q= 0

at the chevron tip. (c) Another stable state with Q= p at thickness in the smectic A phase.
the chevron tip. (d) The structure at the centre of the wall The bulk value of the molecular cone angle that
is a planar chevron structure. follows from the model is

tan qB = [ |c) |/(2Dq2
0 )]1 /2 . (1)

them, we use the geometry shown in ® gure 1. If the
z-axis is chosen to point along the surfaces and along 2.1. Calculation details
the chevron direction then at z < Õ Nd0 /2 the director The co-ordinate system used for calculations is shown
is switched in one stable state, ® gure 1 (b). At z > Nd0 /2 in ® gure 1. We assume that the director and the smectic
the director is switched to the other stable state, order parameter are functions of x and z only, and for
® gure 1(c). We ® nd the width of the area (wall) over numerical calculations we express the director by its
which the director rotates from one stable state to the components along the x-, y- and z-axes:
other and calculate the energy associated with the wall

n(x, z)= [k(x, z), l (x, z), m(x, z)],as a function of the number of smectic layers between
the switched layers and can then make estimates of the where m = (1 Õ k2 Õ l2 )1 /2 , because |n(r) | = 1. The smectic
size of the pixel required for switching to occur. Our order parameter phase factor is:
approach, i.e. the use of the Landau type model, also

w(x, z)= q0 [z+ u(x, z)].allows us to determine the e� ect of temperature on the
pixel wall properties. We show that both the wall energy We have introduced the layer displacement ® eld u (x, z)

which describes the departure from the planar layer con-and the wall width obey a power law dependence on
temperature. ® guration. The variables used in the numerical calculations
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1431Domain walls in chevron SSFL C cells

are k(x, z), l (x, z) and u (x, z). The results, however, are 2.1.2. Dimensionless free energy density
For computational purposes it is useful to write thepresented in terms of the molecular cone angle q, the

director position on the cone Q and the smectic layer energy in dimensionless form. We scale the length in
the x-direction with respect to the characteristic widthtilt d.

In the modelling of two pixels with di� erent director of the chevron tip lc h = (2D/|c) | )1 /2 [4, 5] and thus
introduce the following dimensionless length:orientation and the wall between them, we use the

geometry shown in ® gure 1. At z < Õ Nd0 /2 the director
j = x/lc h .is switched in one stable state with Q = 0 at the chevron

The co-ordinate z is scaled with respect to the layertip. We shall refer to this state as a E -state, because in
thickness (d0 ) required by the surface:® gure 1(b) the director at the chevron tip points out of

the paper in the Õ y-direction. At z > Nd0 /2 the director
f= z/d0 .

is switched to the other stable state with Q= p at the
In addition we introduce the following dimensionlesschevron tip (Ö -state, since the director at the chevron
parameters and constants:tip points inside the paper, i.e. in the y-direction).

These are assumed to be strong boundary conditions at
z = Õ Nd0 /2 and z = Nd0 /2. The wall is centred around CK =

K

2Dq2
0g

2
B

, CR =
c
d

|c) |
, R = lc h /d0 =

1

2ptan qBz = 0.
and

2.1.1. Assumptions
w(j)=

1

lc h

qu(j)

qj
.In calculating the structure and the energy of the wall

several reasonable assumptions are employed:
The dimensionless free energy G is de® ned as

(1) We assume non-polar surface orientational anchor-
ing and study only cells with symmetric chevron

G =
1

2p|c) |g2
B q0 lc h PP f (x, z)dx dz

structure. In the symmetric chevron structure we
expect a symmetric structure of the wall formed
between two stable states. As a result the structure =PP [gn (j, f)+ gs (j, f)] dj df
in the smectic layer that lies in the centre of the wall
(at z = 0) has to be a planar chevron structure in where (the subscripts f and j denote a partial derivative
which the director lies in the xz-plane everywhere with respect to f and j, respectively)
in the layer, see ® gure 1 (d).

(2) We assume that the cell thickness is much larger
gn (j, f)=

1

2
CK C(R2 l2

f + l2
j )A1+

l2

m2 Bthan the width of the chevron tip. As a result the
e� ect of the surface on the structure around the
chevron tip is disregarded. + (R2 k2

f + k2
j )A1+

k2

m2 B(3) The results obtained from our previous work are
used to simplify the model. The most important
simpli® cation follows from the result that the +

2kl

m2
(R2 kflf+ kjlj)+

2l

m
R (kflj Õ lfkj)D (2)

gradient terms in the director components that
follow from the smectic term D| (n Ö = )2 y|2 only is the dimensionless nematic free energy density; the
slightly renormalize the nematic elastic constant dimensionless smectic free energy density is
K and as such they can be neglected. The only
relevant gradient term in D| (n Ö = )2 y|2 is the term

gs (j, f)= CR (wk+ m Õ 1)2 Õ B+
1

2 tan2 qB

B2 +
1

2
w2

jincluding the second spatial derivative of the
displacement u.

(3)(4) We assume that the displacement ® eld u (r) is a
function of x only. This means that the smectic where
layer orientation along the z-axis does not change

B = l2 + k2 + w2 (1 Õ k2 ) Õ 2mkw.signi® cantly, i.e. the director switches from one
state to the other mostly by changing the angles The spatial dependences of k(j, f), l (j, f) and u (j) are

found in the following way. First we ® nd the solutionq and Q. This assumption was checked for validity.
(5) We also assume that the magnitude of the smectic for one single layer [4]. In that case all the variables

are functions of j only. We ® nd spatial dependencies fororder parameter is constant and equal to its bulk
value: g(r) =gB . k(j), l(j) and u (j). When one solution is found we know
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1432 N. VaupoticÏ and M. CÏ opicÏ

that k(j), Õ l(j) and u (j) is also the structure with a
minimum energyÐ that is the second bistable director
structure. The ® rst solution is then taken as a boundary
condition in the smectic layer at z = Õ Nd0 /2 and the
other as a boundary condition at z = Nd0 /2. Finally we
study a two dimensional problem: we minimize the
energy over k(j, f) and l(j, f) and employ a relaxation
method to solve the coupled set of Euler± Lagrange
equations obtained.

3. Numerical results

We ® rst show results for the structure and energy of
the wall formed between two switched regions at a
constant temperature deep in the smectic C phase, i.e.
far from the smectic C± smectic A or smectic C± nematic
phase transition temperature. To present characteristic
results we chose the following set of values [14, 15]:

qB = 20 ß , d0 = 3 nm, c
d/|c) | = 10, K = 10 Õ

1 1 J mÕ
1 ,

Dq2
0g

2
B /K = 10 Õ

2 , N = 120. (4)

With these values the dimensionless parameters are:
CK = 50, CR = 10 and R = 0.45. In the x-direction we
extended the calculation to x = Ô 30 lc h . The typical
width of the cell is 2mm, which is about 1500 lc h with

Figure 2. (a) The molecular cone angle variation along thethe chosen set of parameters. Inside one layer signi® cant
f-axis at di� erent values of j. (b) The molecular cone

variation of the variables k(j, f), l(j, f) and u(j) occurs in angle variation along the j-axis at chosen values of f. The
a region of a width of a few typical chevron widths. Thus number of smectic layers between the switched areas is

N = 120.at x = Ô 30 lc h we are already very far from the chevron
tip and can take the following free boundary conditions
at these values of x: ql (j, f)/qj = 0, qk(j, f)/qj = 0 and
qu (j)/qj = 0. values of f. It can be seen that the director rotation on

In ® gures 2 (a) and 2(b), respectively, we show the the cone from one state to the other is localized around
molecular cone angle variation along the f-axis at f= 0. However [see ® gure 3 (a)] , the rotation on the
di� erent values of j, and its variation along the j-axis cone along the f-axis (i.e. from one smectic layer to
at chosen values of f. We are considering only the another) is signi® cant at all values of j (while the
symmetrical chevron structure where q is a symmetric molecular cone angle changes signi® cantly along f only
function along j around j = 0. Since the director at the close to the chevron tip, i.e. at j close to 0). The main
chevron tip has to rotate from Q= 0 at f= Õ N/2 to deformation in the smectic C structure is thus localized
Q= p at f= N/2 the only director position at j = 0 and along the f-axis around j = 0 (the chevron tip) and along
f=0 allowed by the symmetry is n(j=0, f=0)= (0, 0, 1). the j-axis around f= 0 (the centre of the wall associated
This can also be seen from ® gure 2, where the molecular with the pixel switch).
cone angle essentially reduces to 0 at f= 0 and the We see that at f= 0 the value of Q is Q(j, f= 0) = p/2
chevron tip. for each j. The exception is the value of Q at j = 0,

The crucial parameter which determines optical where q= 0 and Q is not de® ned. So in the smectic layer
properties of the surface-stabilized smectic C liquid that lies between the two switched areas there is a planar
crystal cells is the director position on the cone. When chevron structure, where the director lies in the xz-plane
such a cell is set between two properly aligned crossed everywhere in the layer.
polarizers one of the director states transmits light In ® gure 4 we show the di� erence Dg = g (f) Õ g
(bright state) and the other does not (dark state). In between the free energy density g (f) de® ned as
® gures 3(a) and 3 (b), respectively, we show the director
rotation on the cone (Q) along the f-axis at di� erent g(f)=P L/(2lch)

Õ
L/(2lch)

[gn (j, f)+ gs (j, f)] dj
values of j, and its rotation along the j-axis at chosen
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1433Domain walls in chevron SSFL C cells

in dimensionless free energy associated with the wall is
obtained as

DG =P N/2

Õ
N/2

[g(f) Õ g] df.

From the considerations in §2.1.2 we calculate the
increase in the free energy:

DF =
K

CK R
DG.

At the chosen set of parameters and L = 2mm the energy
associated with the wall is 7 Ö 10Õ

1 2 J mÕ
1 . Assuming

that the switch from one stable state to the other is
obtained by the application of an external electric ® eld,
we can also estimate the reduction in free energy when
the director switches from one stable state to the other.
When a voltage U is applied across the cell the reduction
in the electrical free energy is approximately 2PUd0 in
one smectic layer. At P = 50mC mÕ

2 and U = 1V this
amounts to ~3 Ö 10Õ

1 3 J mÕ
1 per layer. The energy

associated with the wall is thus of the order of the
energy reduction inside a few tens of switched layers.

Now we have the information needed to answer
several questions regarding the pixel switching:

(1) The number of smectic layers which need to beFigure 3. (a) The director rotation on the cone (Q) along the
switched so that the decrease in the free energyf-axis at di� erent values of j. (b) The director rotation on
due to switching is greater than the increase inthe cone along the j-axis at chosen values of f. The

structure is calculated for Õ N/2 < f< N/2, where N = 120. free energy due to wall formation gives an estimate
of a minimum pixel width needed for the switch
actually to occur.

(2) If, on the other hand, we have a prescribed width
over which the voltage is applied then with the
above procedure the voltage needed to switch the
director can be found.

(3) The width of the wall (lw ) between switched areas
is approximately 50 smectic layers at a chosen
realistic set of parameters (4). With d0 = 3nm
there is thus a region of about 0.1mm between the
two switched areas where the director is in none
of the bistable states. This width is negligible
compared with the common pixel widths which
are of the order of tens of mm.Figure 4. The di� erence Dg= g (f)Õ g as a function of f= z/d0 .

The number of smectic layers between the switched areas It becomes rather energy costly if we want to switch
is N = 120. The inset: The di� erence Dg at N = 20. layers that are less than Nw = lw /d0 layers apart. The

increase in free energy as a function of the number of
and the free energy density g the cell would have if there smectic layers between the switched areas is shown in
were no switching along the z-direction: ® gure 5. At N < Nw the wall energy increases signi® -

cantly. The layers that are closer than Nw layers apart
g =P L/(2lch)

Õ
L/(2lch)

[gn (j)+ gs (j)] dj. can still be switched, but a higher price is paid to achieve
switching. The energy associated with the wall is already
2 Ö 10Õ

1 1 J mÕ
1 at N = 20, which is a few times largerThe energy increases signi® cantly around f= 0, where

the deformation in q and Q is concentrated. The increase than at N = 120 (see also the inset to ® gure 4). At
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1434 N. VaupoticÏ and M. CÏ opicÏ

smectic Cphase. The dimensionless parameter CR is related
to the reduced temperature as CR = c

d/|c) | = (a0 |t| )Õ 1 ,
where a0 is of the order of 1 [15].

To study temperature dependence we have chosen the
following set of parameters: The values at |t| = 0.1 are
given in (4). The following temperature dependences can
easily be found:

tan qB 3 |t|1 /2 , CR 3 |t| Õ
1 , R 3 |t| Õ

1 /2 .

Since the chevron width diverges when the temperature
approaches the smectic C± smectic A phase transition
temperature, we have to send the cell boundaries to
in® nity in order to study only the e� ects inherent to theFigure 5. The increase in the free energy (DF ) due to the wall
chevron structure and disregard the surface e� ects. Information as a function of a number (N ) of smectic layers

between the switched areas. K is the nematic elastic calculation we have thus chosen L= 100mm. Results
constant. are also shown for L = 2mm, where the e� ect of the

con® ned system can already be seen. Since no surface
orientational e� ect was considered at L = 2mm, these

N > N w the wall energy remains constant regardless of results would be valid only in the case of a non-physical
the number of intermediate layers. By increasing the surface condition with no preferred anchoring orientation
number of intermediate layers above Nw we simply at the surface.
increase the width of the pixel. An important conclusion The width of the wall as a function of the reduced
follows from this result (see ® gure 6): the width of the temperature is shown in ® gure 7. The width increases
region DzE , along which an external ® eld has to be as the absolute value of the reduced temperature
applied across the cell, has to be large enough that the decreases. At L= 100mm the dependence obeys a
free energy decrease due to the electrical term covers power law: lw 3 |t| Õ

0 . 5 . At L = 2mm we observe a slight
the energy increase due to the wall formation. This deviation from this power law. We can also estimate
gives the minimum width of the region over which the this power law from the dimensionless free energy
electrical ® eld must be applied. The pixel width (DzP ) densities, see equations (2) and (3). The leading term
can be much greater, however; its width is determined that opposes the director rotation on the cone from
by the distance between the two regions in which the one stable state, with the y-component of the director
electric ® eld is applied minus the wall width. equal to l (j, f= Õ N/2 ), to the other stable state, with

Finally we study the temperature dependence of the l (j, f= N/2) = Õ l(j, f= Õ N/2), is in the nematic free
energy associated with the wall formation (DF ) and energy density, equation (2), and is CK R2 l2

f /2. The
the width of the wall (lw ). The temperature dependent dimensionless constant in front of the l2 -term in the
parameter is |c) |. The temperature dependence is best smectic elastic free energy density, equation (3), is of
presented by the variation of the reduced temperature
t = T /TA C Õ 1, which is 0 at the bulk smectic A± smectic C
phase transition temperature, and is negative in the

Figure 6. The width of the switched region. The width over
which the electric ® eld is applied is DzE . The width of the

Figure 7. The width of the wall (lw ) as a function of thewall formed between two switched areas is Dzw . In this
region the director switches from the E to the Ö state. reduced temperature |t|. Squares: L= 100mm; circles:

L= 2mm; full line: the best power law ® t to the numericalThe actual width of the switched area is DzP and can be
wider than DzE . results obtained with L = 100mm.
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1435Domain walls in chevron SSFL C cells

the order of 1. We can thus expect that the variation would be approximately 0. Because q0 and gB are temper-
ature independent, the free energy associated with the wallof l (f) will be signi® cant over the region with the width

of the order of ~d0 (CK R2 )1 /2 . Since R3 lc h 3 |t| Õ
1 /2 the formation is proportional to |c) |q2

B lw 3 |t| |t| |t|Õ
1 /2 = |t|3 /2.

A more detailed numerical calculation con® rmed thiswall width can be expected to follow the same power
law dependence as the chevron width: lw 3 |t| Õ

1 /2 . power law dependence.
Numerical calculations con® rm this rather rough estimate.

4. ConclusionsIn ® gure 8 we show the temperature dependence of
We have studied theoretically the pixel wall propertiesthe wall energy. The energy associated with the wall

in surface-stabilized smectic C cells. Using the Landau±formation increases as the absolute value of the reduced
de Gennes model we determined the structure andtemperature increases (i.e. as we go deeper into the
energy of the wall formed between two states in cellssmectic-C phase). We note that the energy depends
with a uniform chevron direction. The director rotationon the cell thickness since the deformation of q and Q
from one state to the other occurs in the middle betweenat the wall (f~ 0) extends across the whole cell, i.e.
the regions in which two opposite states are stabilizedfrom x = Õ L/2 to x = L/2. At L = 100mm the wall
by, for example, the application of an external electricenergy obeys a power law dependence on temperature:
® eld. The width of the wall is temperature dependentDF 3 |t|1 . 5 . At L = 2mm we see deviation from this power
and it obeys the power law lw 3 |t| Õ

0 . 5 , as long as thelaw at |t|< 0.01 where ® rst the width of the wall due to
cell thickness is much larger than the wall width andthe switch between two states, and then the chevron
the chevron tip width. Far from the smectic C± smectic Awidth, become comparable to the cell thickness.
phase transition temperature the wall width is a few tensThe energy power law dependence can again be
of smectic layer widths, and the energy associated withestimated from the model. Let us assume an extremely
the wall formation is comparable to the energy reductionsimpli® ed situation with a bookshelf geometry of the
due to the application of the electric ® eld over a fewsmectic layers. Let the director inside one layer lie in
smectic layers. The wall energy also obeys a power lawthe yz-plane everywhere in the layer. Also the molecular
dependence on temperature: DF 3 |t|1 . 5 , as long as thecone angle is the same everywhere in the layer. The
cell thickness is much larger than the wall width andsituation is similar to that shown in ® gure 1. The director
the chevron tip width.switches between two stable states. The director in the

layer that lies in the centre of the wall lies in the xz-plane
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